2024年5月16日,广受行业关注和赞誉的“第九届中国动力电池回收利用产业发展论坛”在长沙市成功召开。
本届论坛由中国电子节能技术协会电池回收利用委员会、动力电池回收网、电池材料网、电池回收利用网、电池工业网主办。
论坛期间,上海电力大学 廖强强教授 进行了以《电动汽车退役电池梯次利用研究与应用》为题的主题演讲。
廖强强教授的演讲主要从电动汽车动力电池的储能潜力、退役电池健康度快速评估技术、储能电站健康度在线评估技术、锂离子电池循环寿命预测技术、储能电站电池故障诊断技术、研究成果典型应用案例六个方面展开。
当前,我国电动汽车保有量持续提高,回收利用市场规模也随之增长。 廖教授认为,应着眼于资源循环利用,充分挖掘电动汽车电池的储能属性,实现节能减排。 而健康状态(SOH)的快速评估则是退役电池梯次利用关键技术之一。 廖教授讲解了如何从电池参数如电阻、电压、温度等的变化对退役电池的健康状态进行评估。 展示了从电阻角度快速评估、从开路电压角度快速评估、采用低SOC段的工作电压数据快速评估、采用中SOC段的工作电压数据快速评估、采用高SOC段的工作电压数据快速评估、从电池温度角度快速评估技术。 以电池特征参数(如统计学指标、微分参量)为输入量,采用机器学习方法,实现小样本训练的电池寿命精确预测。 目标是开发基于锂离子电池机理和机器学习的混合模型,进行锂离子电池寿命预测,预测准确率95%以上。 以单体电压数据、总电压数据、和对应采样时间为原始数据,采用局部离群因子(LOF)算法提取电池故障特征,实现锂离子电池故障精准诊断。 目标是开发基于锂离子电池机理和局部离群因子(LOF)算法的混合模型,进行锂离子电池故障的预测和识别,准确率95%以上。